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Abstract

A bifurcation behaviour of flows driven by opposing buoyancy in two vertically connected open cavities was found and investigated
using flow visualization experiments, theoretical analysis and computational fluid dynamics simulations. In the theoretical analysis, the
fluid in each cavity was assumed to be fully mixed. It was found that two stable fixed points exist for a certain range of strength ratios of
the heat source/sink. Hysteresis phenomenon was found between the two stable steady flows. The simple theoretical analysis suggests
that two Hopf bifurcations also occur. Both computational fluid dynamics simulations and flow visualization confirm the existence
of two stable solutions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to their significance in many engineering applica-
tions, buoyancy-driven flows (i.e., thermal convection, fluid
motion set up by heating and cooling processes) have been
extensively studied in various different configurations, such
as natural convection in enclosed cavities (e.g., [1]) and
open cavities (e.g., [2]) with heated boundaries. It is known
that buoyancy-driven flows can exhibit various dynamical
phenomena. For example, in the well-known Rayleigh–
Bernard convection problem, the cavity has two differen-
tially heated horizontal walls, with a cold top, a hot bottom
and two adiabatic side walls. When the Rayleigh number
(Ra) increases, the flow is shown to undergo transitions
from a state of pure conduction to steady cellular flow,
periodic flows, quasi-periodic flows, chaotic flows and ulti-
mately turbulent flows (e.g., [3]). Jahnke et al. [4] numeri-
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2006.03.016

* Corresponding author. Tel.: +852 2859 2625; fax: +852 2858 5415.
E-mail address: liyg@hku.hk (Y. Li).
cally investigated convection in an enclosed cavity, where
the upper half of the side walls was relatively cold while
the lower half was relatively warm. As Ra increases, the
flow undergoes transitions from a two (2) by two (2) steady
cellular flow to a pitchfork bifurcation, a Hopf bifurcation
leading to oscillatory flows etc.

One interesting class of buoyancy-driven flows involves
a nearly direct opposition of two buoyancy forces. The pio-
neering work of Stommel [5] showed that two different flow
regimes existed in two horizontally connected cavities in
which the flow was driven by opposing buoyancy forces
due to heat and salinity. His work initiated much research
effort on the existence of alternative ocean currents and
multiple flow states in estuaries, shelves and marginal seas
(e.g., [6–10]). A different but related flow configuration was
suggested by Keller [11] and Welander [12], i.e., a differen-
tially heated fluid loop subjected to a heat source at the
top and a heat sink at the bottom. Periodic oscillations
were found in a one-dimensional mode of thermal convec-
tion due to opposing buoyancy forces. Subsequent work
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Fig. 1. The geometry and notation of the two vertically connected cavities
with a positive buoyancy force in the lower cavity and a negative
buoyancy force in the upper cavity (a). Two flow patterns are possible, i.e.,
an upward flow pattern (b), and a downward flow pattern (c).

Nomenclature

A opening area (m2)
b variable used in Eq. (5)
C specific heat of thermal mass (fluid) (J/kg K)
CD discharge coefficient
Cp specific heat of fluid at constant pressure

(J/kg K)
E heat source (W)
h height between two openings in each cavity (m)
k turbulence kinetic energy (W)
M weight of thermal mass (fluid) (kg)
p pressure (Pa)
q flow rate of fluid through opening (m3/s)
Ra Rayleigh number
Re Reynolds number
t time (s)
T temperature (K)
u,v velocity component at x- and y-direction,

respectively (m/s)

Greek symbols

b fluid expansion coefficient
e dissipation rate of turbulence kinetic energy

(m2/s2)

h temperature difference (K)
j thermal diffusivity (m2/s)
k eigenvalue of a matrix
m kinetic viscosity (m2/s)
mt turbulence kinetic viscosity (m2/s3)
q fluid density (kg/m3)
rk turbulence diffusion coefficients for k

rt turbulent diffusion coefficients for T

re turbulence diffusion coefficients for e
s a variable related to time, used in Eq. (5)

Subscripts

b bottom opening
m middle opening
t top opening
1 zone 1 or lower cavity
2 zone 2 or upper cavity
0 ambient
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showed that much richer dynamical phenomena such as the
Lorenz-like chaotic flow (i.e., aperiodic flow with succes-
sive direction alternation) exists. A good review of research
on natural circulation loops can be found in the works of
Greif [13] and Jiang et al. [14].

None of references on the opposing buoyancy-driven
cavity flows cited above considered open cavities. Cavity
flow with openings can be found in a wide range of engi-
neering applications, e.g., natural ventilation and passive
cooling of buildings, natural venting of smoke flows and
fire spread in buildings, cold and hot water storage/circula-
tion, and solar hot water systems. In this paper, we rotate
the classical two-cavity ocean model of Stommel [5] by 90�
and allow both cavities to directly open to the ambient
environment. The two vertically connected cavities both
have two openings, with a heat source in the upper cavity
and a heat sink in the lower cavity. A simple flow visuali-
zation experiment using salt water to model opposing
buoyancy forces shows the existence of two stable flow
regimes. A simple macroscopic model is then presented in
which uniform fluid temperature distribution is assumed
in each cavity. The flow resistance through openings is con-
sidered by a simple pressure loss coefficient. We derive a
simple system of non-linear ordinary differential equations
that governs the flow rate through the system and the heat
balance in each cavity. Non-linear dynamical system anal-
ysis of the governing equations demonstrated the existence
of two stable flow regimes, as well as two Hopf bifurca-
tions. The bi-stable convection flows are further studied
using computational fluid dynamics with a bi-section con-
tinuation algorithm.

2. Experimental

2.1. A simple model of two vertically connected cavities

with openings

Two vertically connected cavities with a top opening
and a bottom opening are considered (see Fig. 1(a)). The
bottom cavity has a heat source of strength E1 (>0)
and the top one has a heat sink of strength E2 (<0). All
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boundaries of the two cavities are adiabatic. It is obvious
that at least two flow patterns, i.e., an upward flow or a
downward flow, are possible depending on the direction
of the overall buoyancy force (Fig. 1(b) and (c)). If the
overall buoyancy force is positive, the flow is upward;
and if the overall buoyancy force is negative, a downward
flow is expected. Depending on the heat source strength
and size, a thermal plume may be formed in a cavity. A
study of thermal plumes in an open cavity showed that
the flow might be stratified [15]. We first present flow visu-
alization results to illustrate the existence of two flow
regimes using a simple ‘fish tank’ experimental set-up.

2.2. Experimental set-up

A two-cavity perspex tank was constructed with each
cavity having the dimensions of 20 cm (long) · 20 cm
(wide) · 10 cm (high) (Fig. 2). A 20 · 1.5 cm opening con-
nected the two cavities. Two openings of the same size were
made in the ceiling of the upper cavity and in the floor of
the lower cavity. In the two bottom and top walls, there
were also 40 small holes, each 1 mm in diameter, for pro-
viding a ‘heat’ source and sink, respectively. The two-cavity
tank was placed inside a large water tank (78 · 38 · 54 cm),
which simulated a neutral ambient environment. Different
concentrations of salt water were used to model the buoy-
ancy forces. The salt water method was used successfully
for modeling natural ventilation flow in buildings (e.g.,
[15,16]).

The positive buoyancy flux in the lower cavity was cre-
ated by supplying a constant flow rate of fresh water with
a density of 997.64 kg/m3, while the negative buoyancy in
the upper cavity was created by supplying a constant flow
rate of water with a relatively high concentration of salt
(11.45% by weight) with a density of 1068.84 kg/m3. In
the large tank, a medium concentration of salt water
(5.725% by weight) with a density of 1033.24 kg/m3 was
used. The density difference between the ambient water of
medium salt concentration and the positive ‘heat’ source
was the same as that between the negative ‘heat’ sink in
the upper cavity and the ambient water. With this design,
High concen.
salt water

Low concen.
Salt water

Fig. 2. A schematic diagram o
it was relatively easy to achieve the same absolute strength
of the two buoyancy forces by providing the same flow
rate.

For dynamic similarity, we consider the Reynolds num-
ber (Re) and the Rayleigh number (Ra) [17]

Re ¼ ðg
0HÞ1=2H

m

Ra ¼ g0H 3

jv
where g 0 is the reduced gravity of the flow (gDq/q), j is dif-
fusivity of heat in air for full-scale or salt in water, and v is
the kinetic viscosity.

We use the subscripts L and F to denote laboratory-scale
and full-scale, respectively. For a full-scale flow driven by a
temperature difference of 10 �C, g0F ¼ 0:33 m=s2 at 300 K,
with mF = 1.6 · 10�5 m2/s, j = 2.28 · 10�5. If HF = 3 m,
we have ReF = 1.86 · 105 and RaF = 2.44 · 1010. For a
small-scale brine-water experiment where HL � 0.1 m with
the density difference Dq = 35.6 kg/s, g0L ¼ 0:356 m=s2,
mL = 10�6 m2/s and jL= 10�7, we have ReL = 1.89 · 105

and RaF = 3.56 · 109.
Two typical experiments were conducted as illustrated in

Fig. 3. In the first experiment (Exp. 1, Fig. 3(a)–(c)), once
the set-up was complete the investigators allowed 5 min
to achieve a steady state condition. The positive buoyancy
source was then turned on in the lower cavity and the
investigators allowed another 5 min for the flow to become
steady and stable. The negative buoyancy source was then
turned on and was gradually increased in the upper cavity.
The flow pattern gradually became stable. In the second
experiment (Exp. 2, Fig. 3(d)–(f)), the process in Exp. 1
was reversed by first turning on the negative buoyancy
source in the upper room. The flow visualization was
achieved using the shadow graph principle.

2.3. Observations

During the first experiment, the heat source was
switched on first, i.e., the fresh water source in the lower
cavity. The supply flow rate was controlled by a control
Pump

Valve

Water
 flow meter

Fresh water

Overflow

f the experimental set-up.



Fig. 3. Visualized flow patterns: (a) Exp. 1 – upward flow when the heat source acts alone in the lower cavity (heat source = 4 L/min, heat sink = 0
L/min); (b) Exp. 1 – upward flow when both heat source in the lower cavity and heat sink in the upper cavity act together (heat source = 4 L/min, heat
sink = 2 L/min); (c) Exp. 2 – upward flow when both heat source in the lower cavity and heat sink in the upper cavity act together (heat source = 4 L/min,
heat sink = 4 L/min); (d) Exp. 2 – downward flow when the heat source acts alone in the upper cavity (heat source = 0 L/min, heat sink = 4 L/min);
(e) Exp. 2 – downward flow when both heat source in the lower cavity and heat sink in the upper cavity act together (heat source = 2 L/min, heat sink =
4 L/min); and (f) Exp. 2 – downward flow when both heat source in the lower cavity and heat sink in the upper cavity act together (heat source = 4 L/min,
heat sink = 4 L/min).
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valve to be 4 L/min. The positive buoyancy force led to an
upward flow (Fig. 3(a)). A plume developed from the heat
source, which drove the ambient water into the bottom
cavity through its bottom opening. There was also an
upward flow through the middle opening linking the two
cavities. A stable stratification of flow in the lower cavity
was established (Fig. 3(a)).

The cold source was then switched on in the upper cav-
ity, and was also gradually increased to a flow rate of 4 L/
min (Fig. 3(b)). The plume of the heat source in the lower
cavity was upward and the plume of the cold source in the
upper cavity was downward, but not as strong as the heat
plume. The water flow direction was kept upward, first
from the ambient to the bottom cavity, then through the
middle opening into the upper cavity, flowing into the
ambient through the upper opening. The stable stratifica-
tion was still maintained in the lower cavity. Certain flow
mixing in the upper cavity was also observed (Fig. 3(c)).

The second experiment (Exp. 2) reversed the procedure
of Exp. 1, whereby the cold source was switched on first,
i.e., the high concentration of salt water in the upper cavity.
The supply flow rate was again controlled at 4 L/min. The
negative buoyancy force set up a stable downward flow in
the system with a stable stratification in the upper cavity
(Fig. 3(d)).

The experiment was continued by switching on the heat
source in the lower cavity, first at a flow rate of 2 L/min
(Fig. 3(e)), and then at 4 L/min. Again, an upward plume
in the lower cavity and a downward plume in the upper
cavity were observed. However, the overall flow pattern
was downward (see Fig. 3(f)).

The boundary conditions for the two final flow regimes
(Fig. 3(c) and (f)) were identical. Although, both had two
equal opposing buoyancy forces, two different overall flow
patterns developed, i.e., one upward and one downward.

The same experiments were repeated more than 30 times
by two different groups of investigators in early 2003 and
late 2003, and the two differential flow patterns were
always obtained, demonstrating that both solutions are
physically very stable, which will be shown later by theoret-
ical analysis. The experiments were also repeated with dif-
ferent source strengths, say 2 and 4 L/min. All these
experiments showed the existence of two stable flow pat-
terns under identical boundary conditions, but with two
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different initial conditions. The mechanisms for the exis-
tence of the two stable flow patterns are explained by the
following theoretical analyses.

3. Theoretical analysis

3.1. Macroscopic model

To provide physical insight into the mechanisms of the
existence of two stable flow regimes in the two vertically
connected open cavities, a simple macroscopic analysis
was performed. The fluid temperature in each cavity was
assumed to be uniform. This assumption may not be valid
due to flow stratification; however, the resulting mathemat-
ical model was shown to provide sufficient physical insights
into the bifurcation behaviour. The magnitude of the heat
source in the lower cavity was E1 (>0) and the magnitude
of the heat sink in the upper cavity was E2 (<0). It was also
assumed that all other walls and the partition between the
two cavities were adiabatic.

A heat balance equation for the fluid in each cavity can
be written as follows:
For upward flows (Fig. 1(b)):

C1M1

dT 1

dt
¼ E1 þ qCpqðT 0 � T 1Þ

C2M2

dT 2

dt
¼ E2 þ qCpqðT 1 � T 2Þ

ð1Þ

For downward flows (Fig. 1(c)):

C1M1

dT 1

dt
¼ E1 þ qCpjqjðT 2 � T 1Þ

C2M2

dT 2

dt
¼ E2 þ qCpjqjðT 0 � T 2Þ

ð2Þ

Due to mass conservation, the volumetric flow rates
through all three openings were equal as the fluid was as-
sumed to be incompressible. The flow was driven by ther-
mal buoyancy alone. It was further assumed that the flow
through each opening was orifice-alike and thus a dis-
charge coefficient CD can be used to characterize the pres-
sure-driven flow through each opening [18]. The volumetric
flow rate q can be derived to be a function of the combined
buoyancy force, the effective opening area and the dis-
charge coefficients as

qjqj ¼ ½ðCDAÞ��2 2gh1ðT 1 � T 0Þ
T 0

þ 2gh2ðT 2 � T 1Þ
T 0

� �
ð3Þ

The effective opening area (CDA)* can be calculated from
the areas of three openings:

ðCDAÞ� ¼ ðCDtAtÞðCDmAmÞðCDbAbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCDtAtCDbAbÞ2 þ ðCDmAmCDbAbÞ2 þ ðCDmAmCDbAtÞ2

q
ð4Þ

We let q > 0 when the fluid flow is upward, and q < 0 when
the fluid flow is downward. As seen from Eq. (3), if

2gh1ðT 1 � T 0Þ
T 0

þ 2gh2ðT 2 � T 1Þ
T 0

> 0
the flow rate is positive and the fluid flow is upward, and if

2gh1ðT 1 � T 0Þ
T 0

þ 2gh2ðT 2 � T 1Þ
T 0

< 0

the fluid flow is downward.
In order to study the qualitative dynamical behaviour of

the system, i.e., the fixed points and their bifurcation, the
following assumptions are made to simplify the governing
equations. It is assumed that two cavities have identical
geometrical parameters, as well as thermal storage capac-
ity, i.e., C1M1 = C2M2; h1 = h2 defining that s ¼ t

C1M1
,

h1 = T1 � T0, h2 = T2 � T0 and b ¼ qCpðCDA�Þ
ffiffiffiffiffiffiffi
2gh1

T 0

q
. Then

the governing equations can be simplified as follows:
When h1 + h2 > 0:

dh1

ds
¼ E1 � bh1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 þ h2

p
dh2

ds
¼ E2 þ bðh1 � h2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 þ h2

p ð5Þ

When h1 + h2 < 0:

dh1

ds
¼ E1 þ bðh2 � h1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðh1 þ h2Þ

p
dh2

ds
¼ E2 � bh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðh1 þ h2Þ

p ð6Þ

Thus, the dynamical behaviour of the flow in the two ver-
tically connected open cavities may be described by Eqs. (5)
and (6). The system of equations is non-linear, but reason-
ably simple. The fixed points can be obtained and the sta-
bility of these fixed points can be analyzed as a function of
the control parameter E2/E1, i.e., the heat source ratio. De-
tailed derivation is provided in Appendix A. The effects of
unequal geometrical parameters and unequal thermal stor-
age capacities were also analyzed and studied. They are not
included here for simplicity.

When the heat storage parameters and the stack heights
in the two cavities are, respectively equal, the following
conclusions from the simple non-linear analysis can be
made. When E2/E1 < �2, the system has one stable fixed
point, until when E2/E1 is greater than �2 and less than
�9/5, another fixed point is generated from the infinity,
which is unstable. When E2/E1 is greater than �9/5, a Hopf
bifurcation occurs and the unstable fixed point turns into a
stable one. The unstable periodic orbit enlarges as E2/E1

further increases. When E2/E1 is �1, the unstable periodic
orbit becomes a line h1 + h2 = 0. When E2/E1 continues to
increase, the unstable periodic orbit shrinks to another
fixed point and disappears when E2/E1 = �5/9, which is
another Hopf bifurcation point. After this bifurcation,
the stable fixed point becomes an unstable one, which also
disappears when E2/E1 = �1/2. For E2/E1 > �1/2, the sys-
tem has only one stable fixed point. Thus, the system exhib-
its two stable fixed points when E2/E1 is between �9/5 and
�5/9. Almost all experiments described in Section 2 were
for E2/E1 = �1. It should be noted that we were not able
to confirm the existence of Hopf bifurcation in our
experiments.
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3.2. An example

As an example, an open building with two vertically
connected rooms was considered. This model building
was inspired by the Manly Hydraulics Laboratory, which
was completed in 1997 [19]. The building was built on a
sloping site in Manly, Sydney, Australia. It was cooled in
summer by a mixed-mode air-conditioning system, i.e.,
when the outdoor weather was suitable, natural ventilation
was used. Air-conditioning is used during hot summer
days. The floor and roof levels change by 1.2 m steps as
the building progresses up the site. Plenums are located
underneath the offices. For natural ventilation, outdoor
air flows into these plenums via openings. The plenums
communicate with offices above via vertical registers
located in the 1.2 m steps, and via floor registers. Six solar
chimneys are distributed fairly evenly over the roof, and
serve to exhaust air from the offices.

For summer cooling, it is expected that high air temper-
atures in the solar chimneys will drive the airflows, while
the cool storage in the plenums absorbs heat from the
indoor air. The situation is the opposite at night. The solar
chimneys are cooled by the outdoor air, while the plenums
are heated by heat released from the thermal mass. At
night, the heat absorbed during the day is released into
the air. Effectively, there is a heat source in the lower room.
The outdoors is cooler than the building and conduction
and radiation heat loss in the building and the solar chim-
ney effectively gives a heat sink in the upper rooms. Thus a
situation of opposing buoyancy forces can result.

For simplicity, we assume a constant value of heat
source of 1000 W in the lower room, i.e., E1 = 1000 W.
The heat sink strength in the upper room varies, thus we
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Fig. 4. Bifurcation diagram for ventilation flow r
obtain different heat source ratios E2/E1. The dimension
of each room is 4 m (long) · 3 m (wide) · 3 m (high) and
there is an opening of 0.3 m2 in the middle partition con-
necting the two rooms. The fluid is air. The two openings
connecting the two rooms to the outdoors are also
0.3 m2. The reference air density is 1.2 kg/m3. The dis-
charge coefficients for all openings are assumed to be 0.6.
The fixed points are obtained as Eqs. (A4) and (A5), and
Eqs. (A13) and (A14) in Appendix A. The bifurcation dia-
gram is given in Fig. 4 for the airflow rates, and in Fig. 5
for the air temperatures in the two rooms as a function
of the heat source ratio E2/E1.

At first, it is easier to examine the bifurcation diagram
for ventilation flow rates in Fig. 4 than for air temperature
in Fig. 5. The bifurcation diagram can be divided into five
distinct zones in Fig. 4. In the zone between Ad and Bd (or
Bu, here the subscript d stands for downward flows and the
subscript u for upward flows), the heat source ratio
E2/E1 < �2. There is only one stable fixed point for the
flow rate shown in Fig. 4. The flow is downward. In this
zone, the air temperature in the upper room (room 2) is less
than that in the lower room (room 1), as shown in Fig. 5.
This is simple to understand, as the downward flow is first
cooled in the upper room (room 2), followed by heating in
the lower room before the air is discharged through the
bottom opening. The flow exhibits a kind of symmetry,
as there is also one stable fixed point for the flow rate in
Fig. 4 in the zone between Eu (or Ed) and Fu. The flow is
upward in the zone between Eu (or Ed) and Fu. The air is
first heated in the lower room. When E2/E1 < 0, i.e., there
is a heat source in the lower room and a heat sink in the
upper room, the air temperature in the upper room (room
2) is lower than that in the lower room (room 1). The air
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Fig. 5. Bifurcation diagram for the two room air temperatures as a function of the heat source ratio E2/E1. In the symbols, X#*
, X(A � F) indicates

different points on the curves, the subscript #(1, 2) indicates the zone number, and * (d,u) refers to downward and upward flows, respectively. The two
vertical solid lines are the asymptotic lines as the temperatures approach the infinite values.
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temperatures in the two rooms become equal when E2/
E1 = 0, and as E2/E1 further increases, room 2 becomes
warmer than room 1, due to the fact that the heat sink in
the upper room turns into a heat source.

The flow in the middle zone between Cd (or Cu) and Dd

(or Du) has two stable fixed points. When the flow is
upward (i.e., the flow rate in Fig. 4 is positive), the air tem-
perature in room 1 is higher than that in room 2 (compare
the line C1u � D1u for the room 1 air temperature and the
line C2u � D2u for the room 2 air temperature in Fig. 5).
When the flow is downward, the same trend can be
observed (compare the line C1d � D1d and the line
C2d � D2d). It is also generally true that the overall air tem-
peratures in the two rooms are higher when the flow is
upward in this zone. Not shown in Fig. 4 is the existence
of an unstable period orbit when �1.8 < E2/E1 < �1 or
�1 < E2/E1 < �5/9.

What is interesting from this simple analysis is the exis-
tence of a Hopf bifurcation. In Fig. 4, it is shown that an
unstable fixed point (upward flow) is generated from infin-
ity at the point Bu. This is shown in Fig. 5 where the air
temperatures in both rooms (B2u and B1u) are infinite. This
upward flow is unstable. It can also be shown that the
upward flow between Bu and Cu in Fig. 4 is unstable. As
E2/E1 further increases from �9/5 to �1, the unstable fixed
point (upward flow) turns into a stable one. Between the
two stable fixed points, an unstable period orbit exists.
With the same principle, an unstable fixed point (down-
ward flow) is generated from infinity at the point Ed. The
fixed point is also unstable between Dd and Ed. As E2/E1

further decreases from �5/9 to �1, the unstable fixed point
(downward flow) turns into a stable one. Between the two
stable fixed points, an unstable period orbit exists. When
E2/E1 = �1, both unstable periodic orbits converge to a
straight line h1 + h2 = 0.

This non-linear dynamical process can be further dem-
onstrated by solving the governing equations (1) and (2)
numerically using the fourth-order Runge–Kutta method.
We present the phase portrait and vector field in Fig. 6
when E2/E1 = �1. Fig. 6 is obtained using different combi-
nations of initial conditions of the two air temperatures. It
is observed that different initial conditions converge to two
different stable solutions of the air temperature, indicated
by the two small circles in Fig. 6. Both the phase portrait
and the vector field show the existence of a straight line
(not shown) separating the two stable fixed points (circles).
In Fig. 7, we present the phase portraits for six other differ-
ent heat source ratios. When E2/E1 = �2.5 and E2/E1 =
0.5, all different initial conditions converge to one fixed
point. When E2/E1 = �1.85 and E2/E1 = �0.52, we see a
stable fixed point and an unstable fixed point. When E2/
E1 = �1.75 and E2/E1 = �0.56, we see two stable fixed
points and unstable periodic orbits may also be seen in
both phase portraits, but located on two different sides of
the straight line h1 + h2 = 0. This numerical result agrees
well with the theoretical analysis shown in Figs. 4 and 5.

4. Analysis using computational fluid dynamics

4.1. Physical model and governing equations

The above theoretical analysis assumes that the fluid
temperature in each cavity is uniform, which is not true,
as shown by flow visualization experiment. Computational



Fig. 6. Phase portrait and vector field when the heat source E1 in the lower
cavity (zone 1) and the heat sink E2 in the upper cavity (zone 2) are equal
in magnitude, i.e., E2/E1 = �1: (a) phase portrait; and (b) vector field. The
two fixed points are indicated by two small circles.
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fluid dynamics (CFD) simulations were carried out to con-
firm the bi-stable flow phenomenon. Our CFD simulations
were carried out using a two-dimensional model. The
model had the same physical parameters as in the example
shown in Section 3.2. The dimensions of each cavity was
4 m (long) · 3 m (high), and there was an opening of
0.3 m2 in the middle partition connecting the two cavities.
The two openings linking the two cavities to the outdoor
environment were also 0.3 m2. The fluid was air. We chose
an outdoor air temperature of 300 K. In the lower cavity,
the heat source was a fixed constant at 1000 W. In the
upper cavity, the heat source varied between �3000 W
and 1000 W.

For simplicity here, CFD simulations were performed in
two simple configurations. For Case 1, the heat source was
distributed in both the upper ceiling and bottom floor of
the two cavities. The middle opening was located in the
middle of the middle partition. The two external openings
were located in the vertical walls. For Case 2, the heat
sources were modeled as two small volumes. The middle
opening was located on the side of the middle partition.
Both external openings were horizontal.

Two different types of boundary treatments were consid-
ered. In one simulation, the two-cavity model was located
within a 40 m · 60 m large space which simulated the out-
door environment. In another simulation, pressure bound-
ary conditions were applied at the two openings connecting
to the ambient environment. The results shown here are for
the latter boundary conditions.

The natural convection was considered to be two-
dimensional, steady, and turbulent. All the thermo-physi-
cal parameters were assumed to be constant except for
the density in the momentum equation following the Bous-
sinesq approximation. The time-averaged governing equa-
tions based on the standard k–e model are as follows:

Continuity:

ou
ox
þ ov

oy
¼ 0 ð7Þ

Momentum:

ouu
ox
þ ovu

oy
¼ � 1

q
op
ox
þ ðmþ mtÞ

o
2u

ox2
þ o

2u
oy2

� �
ð8Þ

ouv
ox
þ ovv

oy
¼ � 1

q
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oy
þ ðmþ mtÞ

o2v
ox2
þ o2v

oy2

� �
þ bgðT � T 0Þ

ð9Þ

Energy:

ouT
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þ ovT
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¼ 1þ m

rt

� �
o2T
ox2
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oy2

� �
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Turbulent kinetic energy:
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¼ mþ mt

rk

� �
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� �
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Turbulent dissipation rate:
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� �
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� �
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k
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where the turbulent viscosity is defined as

mt ¼ Cl
k2

e
ð13Þ

and the turbulent energy production is defined as

Gk ¼ mt 2
ou
ox

� �2

þ ov
oy

� �2
" #

þ ou
oy
þ ov

ox

� �2
( )

ð14Þ

The model coefficients in the standard k–e model are
C1 = 1.44, C2 = 1.92, Cl = 0.09, rk = 1.0, r e = 1.3, rt =
0.9.

The computation was carried out using FLUENT 6.1, a
commercial CFD code on a 2-D configuration. The



Fig. 7. Phase portraits for six different heat source ratios: (a) E2/E1 = �2.5; (b) E2/E1 = �1.85; (c) E2/E1 = �1.75; (d) E2/E1 = �0.56; (e) E2/E1 = �0.52;
and (f) E2/E1 = �0.5.
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SIMPLE algorithm for the pressure and velocity coupling
was used. The QUICK scheme was used for the momen-
tum equations, as well as the governing equations for the
turbulence kinetic energy and the turbulence dissipation
rate. The second-order upwind scheme was used for the
energy equation.

Our solution tracking algorithm is based on that pro-
posed by Albensoeder et al. [20]. In this approach, three
main steps are implemented. Firstly, an original solution
y1 at the control parameter of k1 can be obtained using
the conventional zero initial conditions. Secondly, for a
step size Dk = k2 � k1, a second solution y2 at k2 can also
be computed using the first solution y1 at k1 as the initial
condition. Finally, the third solution y3 at k1 was recalcu-
lated backward using the second solution y2 at k2 as the ini-
tial condition. Here we can get two solutions at k1. If the
original and second solutions at k1 are identical, then we
consider that there is no bifurcation and continue to com-
pute the next solution for a step size of Dk. Otherwise, a
bifurcation point (i.e., turning point A) is assumed to exist,
and then half of the step size will be tried to repeat the
above steps. Iterations are carried out until location of
the turning point is found with a sufficient accuracy. This
solution tracking algorithm allows us to identify the stable
fixed points, but not the unstable ones. Other more rigor-
ous solution tracking algorithms can be found in [10,22].
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4.2. Results and analysis

The streamlines and isotherms are plotted in Figs. 8 and
9 for Case 1, and in Figs. 10 and 11 for Case 2, respectively.
Hysteresis phenomenon appeared in both cases. In Fig. 8,
the streamlines were plotted at four representative heat
ratios of �2, �1.5, �1.2 and �0.8 for the downward flows,
and of �1.2, �0.8, �0.5 and 0 for the upward flows. It was
found that two different flow patterns existed for the two
heat ratios at �1.2 and �0.8. Examining the streamline
plot at a heat ratio of �2, it was found that the incoming
flow spread along the ceiling level, was cooled down by
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the cold ceiling (see Fig. 9), and fell along the right wall. A
clockwise recirculation was formed in the upper cavity. The
cold air fell through the middle opening and entering the
lower cavity. The momentum of this flow, together with
the positive buoyancy force (heating at the floor) created
an anticlockwise recirculation in the lower cavity. There
was a secondary recirculation formed at the top left corner
of the lower cavity. This recirculation zone became smaller
and smaller as the heat ratio further increased. The recircu-
lation zone was almost non-existent at a heat ratio of �0.8.
The flow patterns for the upward flows were nearly oppo-
site to those for the downward flows. The flow in the lower
cavity was anticlockwise in the lower cavity and clockwise
in the upper cavity. There was also a secondary recircula-
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tion zone in the upper cavity. The secondary recirculation
was the greatest when the heat ratio was large (e.g., 0),
gradually decreasing as the heat ratio reduced, and disap-
peared when the heat ratio was �1.2. The same flow pat-
tern symmetry can also be found in the distribution of
isotherms shown in Fig. 4.

No secondary recirculation existed when the two exter-
nal openings were horizontal (Case 2), as shown in
Fig. 10. The general flow recirculation in the two cavities
followed a similar pattern as discussed for Case 1. The
overall airflow rates through the open cavities are also
shown in Figs. 2, 3, 9 and 10. Due to mass conservation,
the airflow rates through all three openings were equal.
When the flow was upward, the flow rate was positive,
and when the flow was downward, the flow rate was nega-
tive. The flow rates predicted by CFD were surprisingly
close to those predicted by the simple analytical solutions
in Fig. 4. What was interesting was that the predicted
ranges of heat ratios when the two solutions coexisted for
the two cases were different. For Case 1, it was found that
the turning point from the downward flow to upward flow
was �0.700, and from upward flow to downward flow was
�1.475. For Case 1, the turning point from downward flow
to upward flow was �0.525, and from upward flow to
downward flow it was �1.900. Our analytical solutions in
Section 3.2 reveal that the range of heat ratios for the exis-
tence of two solutions was �1.8 and �5/9 (or �0.556).
Assuming that the flow was fully mixed in both cavities
was probably the main reason behind the differences
between the CFD and analytical solutions. However, it is
unknown why the bi-stable solution ranges were different
between Case 1 and Case 2. One possible explanation is
in the difference in flow patterns in the two situations con-
sidered here.

The heat ratio range of the bi-stable solutions was rea-
sonably large. Assuming that the heat power in the lower
cavity was 1000 W; the range of heat sinks in the upper
cavity for the existence of two stable solutions was between
�1475 W and �700 W for Case 1 – the smallest range
among all the situations we examined. This means that
the existence of the two stable solutions can be found at
a wide range of heat ratios. The existence of the two stable
solutions can be easily observed in a proper experimental
set-up, as demonstrated in our experimental studies. Accu-
rate devices for measuring salt water density were not avail-
able during the experiments. Salt water density was
determined by the volume of water and the amount of salt
added. Thus, there might be errors in our reported densi-
ties. The bi-stable flow patterns were repeated in more than
40 different experiments that were performed by two differ-
ent groups of investigators.

5. Conclusions

A simple physical model was presented with two verti-
cally connected open cavities, in which it is demonstrated,
using visualization experiments, theoretical analysis and
computational fluid dynamics simulations, that two stable
solutions exist under a wide range of heat source ratios
when flow is driven by opposing buoyancy forces. Two sta-
ble fixed points exist for a certain range of strength ratios
of the heat source/sink. A hysteresis phenomenon was
found between the stable steady flows. Hopf bifurcations
also occur based on our theoretical analysis, assuming that
the flow is fully mixed in each cavity. Both computational
fluid dynamics simulations and the experimental visualiza-
tion results verify this analysis, suggesting that the exis-
tence of two steady state solutions is not affected by the
assumption of uniform temperature in the simple theoreti-
cal analysis.

As similar flows driven by opposing buoyancy forces
exist in practical situations such as smoke spread in build-
ings, and natural ventilation of buildings, the findings in
this paper can be practically very important. Li and Dels-
ante [21] and Hunt and Linden [22] showed the existence
of bi-stable flows in buildings ventilated by buoyancy and
opposing wind. The fact that multiple stable equilibria exist
in very simple buildings shows there is a need for further
study of more realistic situations.
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Appendix A. Dynamical analysis

A.1. Fixed points and their stability for Eq. (5)

Denote the steady state solution (fixed point) of Eq. (5)
as ðh0

1; h0
2Þ, which satisfies the following equation:

E1 ¼ bh0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0

1 þ h0
2

q
E2 ¼ �bðh0

1 � h0
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0

1 þ h0
2

q ðA1Þ
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E1

E2
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1

h0
1 � h0

2

ðA2Þ

Eq. (A2) derives

h0
2 ¼ 1þ E2

E1

� �
h0

1 ðA3Þ

Substituting Eq. (A3) into Eq. (A1) leads to:

ðh0
1Þ

3 ¼ E2
1

b2 2þ E2

E1

� � ðA4Þ

ðh0
2Þ

3 ¼ 1þ E2

E1

� �3 E2
1

b2 2þ E2

E1
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By the first equation of Eq. (A1) together with E1 > 0, we
conclude that h0

1 > 0. Hence, to ensure that h0
1þ

h0
2 ¼ 2þ E1

E2

� �
h0

1 > 0, the condition E2

E1
> �2 must be ful-

filled. Thus, there is only one fixed point for Eq. (5) for
E2/E1 > �2, and the fixed point is given by Eqs. (A4) and
(A5).

To analyse the stability of the fixed point, the lineariza-
tion equation of Eq. (5) at the fixed point ðh0

1; h0
2Þ must be

considered, which is given as follows:

x0

y 0
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1
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5 x
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ðA6Þ

where h1 ¼ h0
1 þ x; h2 ¼ h0

2 þ x; w2 ¼ h0
1 þ h0

2; x0 ¼ dx=dt;
y0 ¼ dy=dt.

The stability of the fixed point ðh0
1; h0

2Þ is governed by
the eigenvalues of the matrix of the linearization Eq.
(A6). If the real parts of two eigenvalues are negative, the
fixed point is stable; if the real parts of two eigenvalues
are positive, the fixed point is unstable, and if the real part
of one eigenvalue is positive and another one is negative,
the fixed point is a saddle. For Eq. (A6), two eigenvalues
k1 and k2 satisfy

k2 þ bkþ c ¼ 0 ðA7Þ

where

b ¼ 2bwþ bh0
2
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2
b2w2

By Eq. (A7) two eigenvalues of Eq. (A5) are given as
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Hence, the real parts of two eigenvalues k1 and k2 are neg-
ative when E2

E1
> � 9

5
and positive when �2 < E2

E1
< � 9

5
.

A.2. Fixed points and their stability for Eq. (6)

Denote the steady state solution (fixed point) of Eq. (6)
as ðh0

1; h0
2Þ, which satisfies the following equation:
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Eq. (A11) derives
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Substituting Eq. (A12) into Eq. (A10) leads to
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The second equation of Eq. (A10) shows that h0
2 > 0 for

E2 > 0, while h0
2 < 0 for E2 < 0. Furthermore, h0

1 þ h0
2 ¼

2þ E1

E2

� �
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2 < 0. Hence, Eq. (A10) has no root for E2 > 0

and E1 > 0; and has one root for E1

E2
> �2. Thus, there is

only one fixed point for Eq. (6) for E2/E1 < �1/2, and
the fixed point is given by Eqs. (A14) and (A15).

To analyse the stability of the fixed point, the lineariza-
tion equation of Eq. (6) at the fixed point ðh0

1; h0
2Þ must be

considered, which is given as follows:
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The two eigenvalues k1 and k2 of Eq. (A15) satisfy

k2 þ bkþ c ¼ 0 ðA16Þ

where
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The two eigenvalues of Eq. (A15) are given as
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Hence, the real parts of two eigenvalues k1 and k2 are
negative when E1

E2
> � 9

5
and positive when �2 < E1
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5
.
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A.3. Bifurcation

The above discussion shows that the real parts of the
two eigenvalues for Eq. (5) are zero when E2/E1 = �9/5;
while the real parts of the two eigenvalues for Eq. (6) are
zero when E1/E2 = �9/5. Bifurcations would occur at this
point. Here we will discuss the dynamical behaviour of
Eq. (5) in detail as near the bifurcation point E2/E1 =
�9/5. Since the real parts of the two eigenvalue k1 and k2

are negative for E1

E2
> � 9

5
and positive for �2 < E1

E2
< � 9

5
, it

is known that

d

dðE1=E2Þ
Reðk1;2Þ < 0 ðA19Þ

Hence E1 + E2 � �4/5E1 < 0.
First let u ¼
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, then Eq. (5) can be written as
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Then Eq. (A20) can be written as

du
dt
¼ E1 þ E2

2u
� bu2 � v

dv
dt
¼ b

2
ðbu3 � ð2E1 þ E2ÞÞ

8><
>: ðA21Þ

The fixed point of Eq. (A21) is then given as
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Substituting (A23) into Eq. (A21), we obtain
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Following the Poincaré–Andronov–Hopf bifurcation theo-
rem [23], we evaluate the following coefficient,
a ¼ 1

16
ðfxxxð0ÞÞ þ

1

16
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p
bu0

ð�fxxð0Þgxxð0ÞÞ
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16u4
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9
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Thus by the Poincaré–Andronov–Hopf bifurcation theo-
rem [23], a Hopf bifurcation occured when the ratio
E2/E1 passes through the value �9/5 and an unstable peri-
odic solution is generated for E2/E1 > �9/5.

Together with the conclusion of the stability of the fixed
points for Eq. (5), we arrive at the following conclusions:

• Eq. (5) has a fixed point for 2 + E1/E2 > 0.
• The fixed point is a source if E1/E2 < �9/5.
• The point E1/E2 = �9/5 is a Hopf bifurcation value.

When the parameter E1/E2 is greater than �9/5, an
unstable periodic orbit is generated.
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